
Database is a collection of related data and data is a collection of facts and figures that can be processed
to produce information.

Mostly data represents recordable facts. Data aids in producing information, which is based on facts. For
example, if we have data about marks obtained by all students, we can then conclude about toppers and
average marks.

A database management system stores data in such a way that it becomes easier to retrieve,
manipulate, and produce information.

Characteristics

Traditionally, data was organized in file formats. DBMS was a new concept then, and all the research was
done to make it overcome the deficiencies in traditional style of data management. A modern DBMS has
the following characteristics −

• Real-world entity − A modern DBMS is more realistic and uses real-world entities to design its
architecture. It uses the behavior and attributes too. For example, a school database may use
students as an entity and their age as an attribute.

• Relation-based tables − DBMS allows entities and relations among them to form tables. A user
can understand the architecture of a database just by looking at the table names.

• Isolation of data and application − A database system is entirely different than its data. A
database is an active entity, whereas data is said to be passive, on which the database works and
organizes. DBMS also stores metadata, which is data about data, to ease its own process.

• Less redundancy − DBMS follows the rules of normalization, which splits a relation when any of
its attributes is having redundancy in values. Normalization is a mathematically rich and scientific
process that reduces data redundancy.

• Consistency − Consistency is a state where every relation in a database remains consistent.
There exist methods and techniques, which can detect attempt of leaving database in inconsistent
state. A DBMS can provide greater consistency as compared to earlier forms of data storing
applications like file-processing systems.

• Query Language − DBMS is equipped with query language, which makes it more efficient to
retrieve and manipulate data. A user can apply as many and as different filtering options as
required to retrieve a set of data. Traditionally it was not possible where file-processing system
was used.

• ACID Properties − DBMS follows the concepts of Atomicity, Consistency, Isolation, and Durability
(normally shortened as ACID). These concepts are applied on transactions, which manipulate
data in a database. ACID properties help the database stay healthy in multi-transactional
environments and in case of failure.

• Multiuser and Concurrent Access − DBMS supports multi-user environment and allows them to
access and manipulate data in parallel. Though there are restrictions on transactions when users
attempt to handle the same data item, but users are always unaware of them.

• Multiple views − DBMS offers multiple views for different users. A user who is in the Sales
department will have a different view of database than a person working in the Production
department. This feature enables the users to have a concentrate view of the database according
to their requirements.

• Security − Features like multiple views offer security to some extent where users are unable to
access data of other users and departments. DBMS offers methods to impose constraints while
entering data into the database and retrieving the same at a later stage. DBMS offers many

different levels of security features, which enables multiple users to have different views with
different features. For example, a user in the Sales department cannot see the data that belongs
to the Purchase department. Additionally, it can also be managed how much data of the Sales
department should be displayed to the user. Since a DBMS is not saved on the disk as traditional
file systems, it is very hard for miscreants to break the code.

Users

A typical DBMS has users with different rights and permissions who use it for different purposes. Some
users retrieve data and some back it up. The users of a DBMS can be broadly categorized as follows −

• Administrators − Administrators maintain the DBMS and are responsible for administrating the
database. They are responsible to look after its usage and by whom it should be used. They create
access profiles for users and apply limitations to maintain isolation and force security.
Administrators also look after DBMS resources like system license, required tools, and other
software and hardware related maintenance.

• Designers − Designers are the group of people who actually work on the designing part of the
database. They keep a close watch on what data should be kept and in what format. They identify
and design the whole set of entities, relations, constraints, and views.

• End Users − End users are those who actually reap the benefits of having a DBMS. End users
can range from simple viewers who pay attention to the logs or market rates to sophisticated users
such as business analysts.

DBMS - Architecture
The design of a DBMS depends on its architecture. It can be centralized or decentralized or hierarchical.
The architecture of a DBMS can be seen as either single tier or multi-tier. An n-tier architecture divides
the whole system into related but independent n modules, which can be independently modified, altered,
changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the DBMS and uses it.
Any changes done here will directly be done on the DBMS itself. It does not provide handy tools for end-
users. Database designers and programmers normally prefer to use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application through which the DBMS can be
accessed. Programmers use 2-tier architecture where they access the DBMS by means of an application.
Here the application tier is entirely independent of the database in terms of operation, design, and
programming.

3-tier Architecture

A 3-tier architecture separates its tiers from each other based on the complexity of the users and how they
use the data present in the database. It is the most widely used architecture to design a DBMS.

• Database (Data) Tier − At this tier, the database resides along with its query processing
languages. We also have the relations that define the data and their constraints at this level.

• Application (Middle) Tier − At this tier reside the application server and the programs that access
the database. For a user, this application tier presents an abstracted view of the database. End-

users are unaware of any existence of the database beyond the application. At the other end, the
database tier is not aware of any other user beyond the application tier. Hence, the application
layer sits in the middle and acts as a mediator between the end-user and the database.

• User (Presentation) Tier − End-users operate on this tier and they know nothing about any
existence of the database beyond this layer. At this layer, multiple views of the database can be
provided by the application. All views are generated by applications that reside in the application
tier.

Multiple-tier database architecture is highly modifiable, as almost all its components are independent and
can be changed independently.

DBMS - Data Models
Data models define how the logical structure of a database is modeled. Data Models are fundamental
entities to introduce abstraction in a DBMS. Data models define how data is connected to each other and
how they are processed and stored inside the system.

The very first data model could be flat data-models, where all the data used are to be kept in the same
plane. Earlier data models were not so scientific, hence they were prone to introduce lots of duplication
and update anomalies.

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships among them.
While formulating real-world scenario into the database model, the ER Model creates entity set,
relationship set, general attributes and constraints.

ER Model is best used for the conceptual design of a database.

ER Model is based on −

• Entities and their attributes.

• Relationships among entities.

These concepts are explained below.

• Entity − An entity in an ER Model is a real-world entity having properties called attributes.
Every attribute is defined by its set of values called domain. For example, in a school database,
a student is considered as an entity. Student has various attributes like name, age, class, etc.

• Relationship − The logical association among entities is called relationship. Relationships are
mapped with entities in various ways. Mapping cardinalities define the number of association
between two entities.

Mapping cardinalities −

o one to one

o one to many

o many to one

o many to many

Relational Model

The most popular data model in DBMS is the Relational Model. It is more scientific a model than others.
This model is based on first-order predicate logic and defines a table as an n-ary relation.

The main highlights of this model are −

• Data is stored in tables called relations.

• Relations can be normalized.

• In normalized relations, values saved are atomic values.

• Each row in a relation contains a unique value.

• Each column in a relation contains values from a same domain.

DBMS - Data Schemas

Database Schema

A database schema is the skeleton structure that represents the logical view of the entire database. It
defines how the data is organized and how the relations among them are associated. It formulates all the
constraints that are to be applied on the data.

A database schema defines its entities and the relationship among them. It contains a descriptive detail of
the database, which can be depicted by means of schema diagrams. It’s the database designers who
design the schema to help programmers understand the database and make it useful.

A database schema can be divided broadly into two categories −

• Physical Database Schema − This schema pertains to the actual storage of data and its form of
storage like files, indices, etc. It defines how the data will be stored in a secondary storage.

• Logical Database Schema − This schema defines all the logical constraints that need to be
applied on the data stored. It defines tables, views, and integrity constraints.

Database Instance

It is important that we distinguish these two terms individually. Database schema is the skeleton of
database. It is designed when the database doesn't exist at all. Once the database is operational, it is very
difficult to make any changes to it. A database schema does not contain any data or information.

A database instance is a state of operational database with data at any given time. It contains a snapshot
of the database. Database instances tend to change with time. A DBMS ensures that its every instance
(state) is in a valid state, by diligently following all the validations, constraints, and conditions that the
database designers have imposed.

DBMS - Data Independence
If a database system is not multi-layered, then it becomes difficult to make any changes in the database
system. Database systems are designed in multi-layers as we learnt earlier.

Data Independence

A database system normally contains a lot of data in addition to users’ data. For example, it stores data
about data, known as metadata, to locate and retrieve data easily. It is rather difficult to modify or update
a set of metadata once it is stored in the database. But as a DBMS expands, it needs to change over time
to satisfy the requirements of the users. If the entire data is dependent, it would become a tedious and
highly complex job.

Metadata itself follows a layered architecture, so that when we change data at one layer, it does not affect
the data at another level. This data is independent but mapped to each other.

Logical Data Independence

Logical data is data about database, that is, it stores information about how data is managed inside. For
example, a table (relation) stored in the database and all its constraints, applied on that relation.

Logical data independence is a kind of mechanism, which liberalizes itself from actual data stored on the
disk. If we do some changes on table format, it should not change the data residing on the disk.

Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on the disk. Physical data
independence is the power to change the physical data without impacting the schema or logical data.

For example, in case we want to change or upgrade the storage system itself − suppose we want to
replace hard-disks with SSD − it should not have any impact on the logical data or schemas.

ER Model - Basic Concepts
The ER model defines the conceptual view of a database. It works around real-world entities and the
associations among them. At view level, the ER model is considered a good option for designing
databases.

Entity

An entity can be a real-world object, either animate or inanimate, that can be easily identifiable. For
example, in a school database, students, teachers, classes, and courses offered can be considered as
entities. All these entities have some attributes or properties that give them their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities with attribute
sharing similar values. For example, a Students set may contain all the students of a school; likewise a
Teachers set may contain all the teachers of a school from all faculties. Entity sets need not be disjoint.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have values. For
example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example, a student's
name cannot be a numeric value. It has to be alphabetic. A student's age cannot be negative, etc.

Types of Attributes

• Simple attribute − Simple attributes are atomic values, which cannot be divided further. For
example, a student's phone number is an atomic value of 10 digits.

• Composite attribute − Composite attributes are made of more than one simple attribute. For
example, a student's complete name may have first_name and last_name.

• Derived attribute − Derived attributes are the attributes that do not exist in the physical database,
but their values are derived from other attributes present in the database. For example,
average_salary in a department should not be saved directly in the database, instead it can be
derived. For another example, age can be derived from data_of_birth.

• Single-value attribute − Single-value attributes contain single value. For example −
Social_Security_Number.

• Multi-value attribute − Multi-value attributes may contain more than one values. For example, a
person can have more than one phone number, email_address, etc.

These attribute types can come together in a way like −

• simple single-valued attributes

• simple multi-valued attributes

• composite single-valued attributes

• composite multi-valued attributes

Entity-Set and Keys

Key is an attribute or collection of attributes that uniquely identifies an entity among entity set.

For example, the roll_number of a student makes him/her identifiable among students.

• Super Key − A set of attributes (one or more) that collectively identifies an entity in an entity set.

• Candidate Key − A minimal super key is called a candidate key. An entity set may have more than
one candidate key.

• Primary Key − A primary key is one of the candidate keys chosen by the database designer to
uniquely identify the entity set.

Relationship

The association among entities is called a relationship. For example, an employee works_at a
department, a student enrolls in a course. Here, Works_at and Enrolls are called relationships.

Relationship Set

A set of relationships of similar type is called a relationship set. Like entities, a relationship too can have
attributes. These attributes are called descriptive attributes.

Degree of Relationship

The number of participating entities in a relationship defines the degree of the relationship.

• Binary = degree 2

• Ternary = degree 3

• n-ary = degree

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be associated with the number of
entities of other set via relationship set.

• One-to-one − One entity from entity set A can be associated with at most one entity of entity set
B and vice versa.

• One-to-many − One entity from entity set A can be associated with more than one entities of entity
set B however an entity from entity set B, can be associated with at most one entity.

• Many-to-one − More than one entities from entity set A can be associated with at most one entity
of entity set B, however an entity from entity set B can be associated with more than one entity
from entity set A.

• Many-to-many − One entity from A can be associated with more than one entity from B and vice
versa.

ER Diagram Representation
Let us now learn how the ER Model is represented by means of an ER diagram. Any object, for example,
entities, attributes of an entity, relationship sets, and attributes of relationship sets, can be represented
with the help of an ER diagram.

Entity

Entities are represented by means of rectangles. Rectangles are named with the entity set they represent.

Attributes

Attributes are the properties of entities. Attributes are represented by means of ellipses. Every ellipse
represents one attribute and is directly connected to its entity (rectangle).

If the attributes are composite, they are further divided in a tree like structure. Every node is then
connected to its attribute. That is, composite attributes are represented by ellipses that are connected with
an ellipse.

Multivalued attributes are depicted by double ellipse.

Derived attributes are depicted by dashed ellipse.

Relationship

Relationships are represented by diamond-shaped box. Name of the relationship is written inside the
diamond-box. All the entities (rectangles) participating in a relationship, are connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary relationship. Cardinality is the
number of instance of an entity from a relation that can be associated with the relation.

• One-to-one − When only one instance of an entity is associated with the relationship, it is marked
as '1:1'. The following image reflects that only one instance of each entity should be associated
with the relationship. It depicts one-to-one relationship.

• One-to-many − When more than one instance of an entity is associated with a relationship, it is
marked as '1:N'. The following image reflects that only one instance of entity on the left and more
than one instance of an entity on the right can be associated with the relationship. It depicts one-
to-many relationship.

• Many-to-one − When more than one instance of entity is associated with the relationship, it is
marked as 'N:1'. The following image reflects that more than one instance of an entity on the left
and only one instance of an entity on the right can be associated with the relationship. It depicts
many-to-one relationship.

• Many-to-many − The following image reflects that more than one instance of an entity on the left
and more than one instance of an entity on the right can be associated with the relationship. It
depicts many-to-many relationship.

Relation Data Model
Relational data model is the primary data model, which is used widely around the world for data storage
and processing. This model is simple and it has all the properties and capabilities required to process data
with storage efficiency.

Concepts

Tables − In relational data model, relations are saved in the format of Tables. This format stores the
relation among entities. A table has rows and columns, where rows represents records and columns
represent the attributes.

Tuple − A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance − A finite set of tuples in the relational database system represents relation instance.
Relation instances do not have duplicate tuples.

Relation schema − A relation schema describes the relation name (table name), attributes, and their
names.

Relation key − Each row has one or more attributes, known as relation key, which can identify the row in
the relation (table) uniquely.

Attribute domain − Every attribute has some pre-defined value scope, known as attribute domain.

Constraints

Every relation has some conditions that must hold for it to be a valid relation. These conditions are
called Relational Integrity Constraints. There are three main integrity constraints −

• Key constraints

• Domain constraints

• Referential integrity constraints

Key Constraints

There must be at least one minimal subset of attributes in the relation, which can identify a tuple uniquely.
This minimal subset of attributes is called key for that relation. If there are more than one such minimal
subsets, these are called candidate keys.

Key constraints force that −

• in a relation with a key attribute, no two tuples can have identical values for key attributes.

• a key attribute can not have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only be a positive integer.
The same constraints have been tried to employ on the attributes of a relation. Every attribute is bound to
have a specific range of values. For example, age cannot be less than zero and telephone numbers cannot
contain a digit outside 0-9.

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key attribute of a
relation that can be referred in other relation.

Referential integrity constraint states that if a relation refers to a key attribute of a different or same relation,
then that key element must exist.

Relational Algebra
Relational database systems are expected to be equipped with a query language that can assist its users
to query the database instances. There are two kinds of query languages − relational algebra and relational
calculus.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as input and yields
instances of relations as output. It uses operators to perform queries. An operator can be
either unary or binary. They accept relations as their input and yield relations as their output. Relational
algebra is performed recursively on a relation and intermediate results are also considered relations.

The fundamental operations of relational algebra are as follows −

• Select

• Project

• Union

• Set different

• Cartesian product

• Rename

We will discuss all these operations in the following sections.

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic formula which may
use connectors like and, or, and not. These terms may use relational operators like − =, ≠, ≥, < , >, ≤.

For example −

σsubject="database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject="database" and price="450"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject="database" and price < "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those books published
after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

For example −

 ∏subject, author (Books)

Selects and projects columns named as subject and author from the relation Books.

Union Operation (∪)

It performs binary union between two given relations and is defined as −

 r ∪ s = { t | t ∈ r or t ∈ s}

Notation − r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

• r, and s must have the same number of attributes.

• Attribute domains must be compatible.

• Duplicate tuples are automatically eliminated.

 ∏ author (Books) ∪ ∏ author (Articles)

Output − Projects the names of the authors who have either written a book or an article or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are not in the second
relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.

 ∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

 ∏ author = 'tutorialspoint'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles written by tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The rename operation allows us
to rename the output relation. 'rename' operation is denoted with small Greek letter rho ρ.

Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

• Set intersection

• Assignment

• Natural join

	Characteristics
	Users
	DBMS - Architecture
	3-tier Architecture

	DBMS - Data Models
	Entity-Relationship Model
	Relational Model

	DBMS - Data Schemas
	Database Schema
	Database Instance

	DBMS - Data Independence
	Data Independence
	Logical Data Independence
	Physical Data Independence

	ER Model - Basic Concepts
	Entity
	Attributes
	Types of Attributes
	Entity-Set and Keys

	Relationship
	Relationship Set
	Degree of Relationship
	Mapping Cardinalities

	ER Diagram Representation
	Entity
	Attributes
	Relationship
	Binary Relationship and Cardinality

	Relation Data Model
	Concepts
	Constraints
	Key Constraints
	Domain Constraints
	Referential integrity Constraints

	Relational Algebra
	Relational Algebra
	Select Operation (σ)
	Project Operation (∏)
	Union Operation (∪)
	Set Difference (−)
	Cartesian Product (Χ)
	Rename Operation (ρ)

